SMS Seminars

Welcome to the Spring 2022 Seminar!

Fall 2022 Seminars will be on Fridays @ 2:30pm in Biodesign Auditorium

If you have any questions regarding SMS seminars please contact: Jennifer.Boyd3@asu.edu

Seminar Calendar

August 26 Yuval Mazor , Arizona State University
"Heterogeneity in Photosystem I and its Antennae Systems"
Download PDF

September 2 Christina Birkel, Arizona State University
"Expanding the Compositional & Microstructural Space of Transition Metal‐based Carbides and (Carbo)Nitrides as 3D and 2D Functional Materials"
Download PDF

September 9 Todd Yeats, University of California, Los Angeles
"Build it and They (Applications) Will Come: The Design of Novel Protein Cages and Related Materials"
Download PDF

September 16 Shu Wang, Arizona State University
"Adipose Stromal Stem Cell‐Targeted Nanoparticles: Browning White Adipose Tissue for Combating Obesity"
Download PDF

September 30 Ryan Kelly, Brigham Young University
"Extending In‐Depth Protein Measurements to Single Cells"
Download PDF

October 7 Klaus Lackner, Arizona State University
"Direct Air Capture for Carbon Management"
Download PDF

October 14 O’Keeffe Lecture: Robert Cava, Princeton University
"Finding New Materials – A Chemical Perspective"
Download PDF

October 21 Scott Blanchard, St Jude Children’s Research Hospital
"TBD"

October 28 Jenn Prescher, University of California, Irvine
"
Multi‐Component Imaging with Engineered Luciferases and Luciferins"
Download PDF

November 3 Eyring Lecture: David Tirrell, California Institute of Technology
"Genetic Engineering of Macromolecular and Cellular Materials"
ISTB4 Patio
Download PDF

November 4 Eyring Lecture: David Tirrell, California Institute of Technology
"Selective Proteomic Analysis of Cellular Sub‐populations in Complex Biological Systems"
Download PDF

November 18 Jun Wang, Stony Brook University
"Measurement of Hundreds of Proteins in Single Cells by Microchip MIST Technology "
PSF-166
Download PDF

December 2 Ronit Freeman, University of North Carolina at Chapel Hill
"TBD"

Eyring

About: Eyring Lectures in Chemistry and Biochemistry

The Eyring Lectures in Chemistry and Biochemistry is an interdisciplinary distinguished lecturer series dedicated to stimulating discussions by renowned scientists who are at the cutting edge of their respective fields. Each lecture series consists of a lead-off presentation to help communicate the excitement and challenge of this central science to the University and community, followed by a more specialized colloquium to help bring the audience to the scientific frontiers of the topics under discussion. Speakers will be scholars in residence in the Department during their lecture series and will be available for informal discussions with faculty, students, and other interested individuals.

The Eyring Lectures in Chemistry and Biochemistry bears the name of our colleague LeRoy Eyring, Regents' Professor of Chemistry, whose extraordinary instructional and research accomplishments and professional leadership at Arizona State University helped to bring the School of Molecular Sciences into international prominence.

Eyring Lecturer Spring 2022

Paul Weiss
University of California, Los Angeles

  • General Lecture
    Nanotechnology Approaches to
    Biology and Medicine
    Thursday March 17
    2:30pm, Marston Theater (ISTB4) 
     
  • Technical Presentation
    Atomically Precise Chemical, Physical,
    Electronic, and Spin Contacts
    Friday March 18
    2:30pm, Biodesign Auditorium

Watch the Lecture

Download PDF- March 17th Lecture || Download PDF- March 18th Lecture

Eyring Lecturer Fall 2021

Mario Capecchi
University of Utah

  • General Lecture
    The Making of a Scientist: An Unlikely Journey
    Thursday Nov 4
    6:00 PM, Armstrong 101
     
  • Technical Presentation
    Mutant Hoxb8 Microglia Are Causative for Chronic Anxiety and OCD‐Spectrum Disorders in Mice. 
    Friday Nov 5
    2:30pm, Biodesign Auditorium

Watch the Lecture

Download PDF- Nov 4th Lecture || Download PDF- Nov 5th Lecture

Eyring Lecturer Fall & Spring 2019

Steven Boxer
Camille Dreyfus Professor of Chemistry
Stanford University

  • General Lecture
    GFP - the Green Revolution Continues
    Thursday, 11/14/2019
    6:30 PM, PSH-153

Abstract:
Bioluminescence has fascinated scientists since ancient times – the green fluorescence from agitated jellyfish is an example and this comes from Green Fluorescent Protein (GFP). Since the discovery in the mid-1990’s that GFP can be expressed in essentially any organism, GFPs have become indispensable tools as genetically encoded fluorescent reporters. A bewildering array of variants has been developed leading to a wide pallet of colors and photo-switching characteristics that are essential for super-resolution microscopy. Our lab was involved in early studies of excited state properties of GFP that led to the discovery that the GFP chromophore is a photoacid – this has many consequences for further protein design and is related to the natural function of this unusual protein. Beyond applications in imaging, GFPs are a wonderful model system for probing the spectroscopic and functional consequences of the interaction between a prosthetic group and the protein surrounding it. I will discuss several examples related to photoisomerization of the chromophore. (1) We have systematically altered the electrostatic properties of the GFP chromophore in a photo-switchable variant using amber suppression to introduce electron-donating and -withdrawing groups to the phenolate ring. The contributions of sterics and electrostatics can be evaluated quantitatively and used to demonstrate how electrostatic effects bias the pathway of chromophore isomerization. (2) Split GFPs are made from protein fragments whose reassembly leads to a fluorescent readout. By chance, we discovered that split -strands can be photo- dissociated, i.e. split GFP is a genetically encoded caged protein. The mechanism of this unusual process will be discussed along with possible applications as optogenetic tools. Host: Neal Woodbury

  • Technical Presentation
    Electric Fields and Enzyme Catalysis
    Fridays, 11/15/2019
    1:30 PM, in Biodesign B (BDB) Auditorium B105

Abstract:
We have developed the vibrational Stark effect to probe electrostatics and dynamics in organized systems, in particular in proteins where vibrational probes can report on functionally important electric fields. The strategy involves deploying site-specific vibrational probes whose sensitivity to an electric field is measured in a calibrated external electric field. Once calibrated, these probes, typically nitriles or carbonyls, can be used to probe changes in electric field due to mutations, ligand binding, pH effects, light-induced structural changes, etc. We can also obtain information on absolute fields by combining vibrational solvatochromism and MD simulations, checked by the vibrational Stark effect calibration. This frequency-field calibration can be applied to quantify functionally relevant electric fields at the active site of enzymes. Using ketosteroid isomerase as a model system, we correlate the field sensed at the bond involved in enzymatic catalysis with the rate of the reaction it catalyzes, including variations in this rate in a series of mutants and variants using non-canonical amino acids. This provides the first direct connection between electric fields and function: for this system electrostatic interactions are a dominant contribution to catalytic proficiency. Using the vibrational Stark effect, we can now consistently re-interpret results already in the literature and provide a framework for parsing the electrostatic contribution to catalysis in both biological and non-biological systems. Extensions of this approach to other classes of enzymes, to effects of electrostatics on pathways of photoisomerization in proteins, and to the evolutionary trajectories of enzymes responsible for antibiotic resistance will be described if time permits. Host: Neal Woodbury

Dean Emily Carter
Princeton University

  • General Lecture
    "Sustainable Energy Materials from First Principles "
    Thursday, March 21, 2019
    6:30 PM, PSH-153

Abstract:
I believe that we scientists and engineers have a responsibility to use our skills to improve life for all Earth’s inhabitants. To this end, for the past dozen years, I have used my skills - in developing and applying quantum mechanics simulation methods aimed at complex phenomena difficult to probe experimentally - to help accelerate discovery, understanding, and optimization of materials for sustainable energy conversion processes. These range from materials for converting sunlight and other renewable energy sources to fuels and electricity, to biodiesel fuels, to clean electricity production from solid oxide fuel cells and nuclear fusion reactors, to lightweight metal alloys for fuel-efficient vehicles. During this talk, I will focus on potential technological advances in materials science, nanoscale optics, and electrochemistry that could someday create a virtuous cycle, exploiting energy from sunlight and molecules in air, water, and carbon dioxide to synthesize the fuels and chemicals needed to sustain future generations.

Eyring Lecturer Fall & Spring 2018

Sunney Xie
Department of Chemistry and Chemical Biology
Harvard University & Peking University
 

  • Technical Presentation
    "Stimulated Raman Scattering Microscopy: Seeing the Invisible in Biology and Medicine"

    Wednesday, 10/24/2018
    3:30 PM
    Biodesign Auditorium BDB105

Abstract:
Stimulated Raman scattering (SRS) microscopy is a label-free and noninvasive imaging technique using vibration spectroscopy as the contrast mechanism. Recent advances have allowed significant improvements in sensitivity, selectivity, robustness, and cost reduction, opening a wide range of applications. This is particularly relevant in biology since SRS microscopy does not affect cell function, and is best suited for imaging small metabolite molecules. For medicine, SRS microscopy provides instant tissue examination without the need of previous histological staining procedures. Host: Neal Woodbury and Jia Guo

  • General Lecture
    "Life at the Single Molecule Level: From Single Molecule Enzymology to Single Cell Genomics"

    Thursday, 10/25/2018
    6:30 PM, PSH-153
     

Abstract:
Since the 1990s, developments in room-temperature single-molecule spectroscopy, imaging, and manipulation have allowed studies of single-molecule behaviors in vitro and in living cells. Unlike conventional ensemble studies, single-molecule enzymology is characterized by ubiquitous fluctuations of molecular properties. The understanding of such single-molecule stochasticity is pertinent to many life processes. DNA exists as single molecules in an individual cell. Consequently, gene expression is stochastic. Single-molecule gene expression experiments in live single cells have allowed quantitative description and mechanistic interpretations. The fact that there are 46 different individual DNA molecules (chromosomes) in a human cell dictates that genomic variations, such as copy-number variations (CNVs) and single nucleotide variations (SNVs), occur stochastically and cannot be synchronized among individual cells. Probing such genomic variations requires single-cell and single-molecule measurements, which have only recently become possible. These studies are difficult since they require the amplification of the minute amount of DNA of a single cell, and existing single-cell whole genome amplification (WGA) methods have been limited by low accuracy of CNV and SNV detection. We have developed transposase-based methods for single-cell WGA, which have superseded previous methods. With the improved genome coverage of our new WGA method, we developed a high-resolution single-cell chromatin conformation capture method, which allows for the first 3D genome map of a human diploid cell. We have also developed a method for single-cell transcriptome with better detection efficiency and accuracy, revealing intrinsic correlations among all detected mRNAs in a single-cell. Host: Neal Woodbury and Jia Guo

David Baker
Professor of Biochemistry
Head of the Institute for Protein Design
Department of Chemistry
University of Washington

  • General Lecture
    "The Coming of Age of De Novo Protein Design"

    Thursday, 3/29/2018
    6:30 PM, PSH-150

Abstract:
The advances in de novo protein design described in my first talk are opening up many new exciting areas of application. I will describe our efforts towards designing next generation therapeutics, vaccines and functional nanomaterials with applications ranging from computing to light harvesting. Host: Neal Woodbury and Jeremy Mills

  • Technical Presentation
    "Recent Advances in Olefin Metathesis by Molybdenum and Tungsten Catalysts"

    Friday,13/30/2018
    3:40 PM, PSH-151

Abstract:
Proteins mediate the critical processes of life and beautifully solve the challenges faced during the evolution of modern organisms. Our goal is to design a new generation of proteins that address current day problems not faced during evolution. In contrast to traditional protein engineering efforts, which have focused on modifying naturally occurring proteins, we design new proteins from scratch based on Anfinsen’s principle that proteins fold to their global free energy minimum. We compute amino acid sequences predicted to fold into proteins with new structures and functions, produce synthetic genes encoding these sequences, and characterize them experimentally. I will describe the design of ultra-stable idealized proteins, flu neutralizing proteins, high affinity ligand binding proteins, and self-assembling protein nanomaterials. I will also describe the contributions of the general public to these efforts through the distributed computing project Rosetta@Home and the online protein folding and design game Foldit. Host: Neal Woodboury and Jeremy Mills

Eyring Lecturer Fall & Spring 2017

Richard Royce Schrock
F G Keyes Professor of Chemistry
MIT Chemistry

  • General Lecture
    "A Discovery and a Nobel Prize 30 years Later";

    Thursday, 10/19/2017
    6:30 PM, PSH-150

Abstract:
A catalytic reaction discovered in the 1960s allows one to break carbon-carbon double bonds and form new ones with remarkable ease. This "metathesis" reaction began to attract the interest of organic, inorganic, and polymer chemists because of its great potential in manipulating carbon-carbon bonds, which is a fundamental goal of organic chemistry. The metathesis reaction has continued to change how chemistry that involves carbon-carbon double bonds, in particular, is practiced in the laboratory and industry. In 1974 I was in the right place at the right time to make a discovery that helped us understand how this reaction works and have spent my career developing catalysts for it. In the process I also discovered catalysts that "metathesize" carbon-carbon triple bonds and one that will "break" the triple bond in dinitrogen (to give ammonia catalytically), a reaction that is crucial to all life on earth. Host: Neal Woodbury

  • Technical Presentation
    "Recent Advances in Olefin Metathesis by Molybdenum and Tungsten Catalysts"

    Friday,10/20/2017
    3:40 PM, PSH-151

Abstract:
Advances in applications of the chemistry of Mo and W olefin metathesis catalysts in the last two years include the synthesis of monoaryloxide chloride imido catalysts, kinetically Z- or E-selective catalytic macrocyclic ring-closing metathesis, stereoselective (Z or E) olefin metathesis reactions that use electron-poor olefins (ClCH=CHCl and CF3CH=CHCF3), and ROMP reactions that yield cis,syndiotactic-A-alt-B copolymers from enantiomerically pure monomers. New applications rely on synthetic advances that include new approaches to monoaryloxide chloride complexes, to rare molybdenum oxo alkylidene complexes, and to previously unknown Mo=CHCl and Mo=CHCF3 complexes, which must be involved in reactions with the electron-poor olefins ClCH=CHCl and CF3CH=CHCF3. Host: Neal Woodbury

Gerhard Wagner
Professor, Department of Biological Chemistry and Molecular Pharmacology
Harvard Medical School

  • General Lecture
    "Solution NMR: from a Chemist's Tool to Solving Protein";

    Thursday, 4/13/2017
    6:30 PM, PSH-150

Abstract:
When I became interested in biophysics little had been done in protein NMR. Mainly chemists used NMR to check the success and purity of their reaction products. As undergraduate physics student at the Technical University of Munich, I had worked on Mössbauer effect studies hemoglobins and ferredoxins. While this technology yields spectra with a small number of resonance lines, I learned that NMR spectroscopy of the same class of proteins could yield spectra with numerous resonances as was shown at Bell Labs in the Shulman group. The discoverer of the paramagnetically shifted heme resonances, Kurt Wüthrich had just moved to the ETH in Zürich, and I decided to join his group as a graduate student. Thus, I entered the field of protein NMR at an early stage. First, I focused on internal motions of proteins and discovered that aromatic side chains of the basic pancreatic trypsin inhibitor (BPTI) rotate fast or slowly depending on their location, and NMR could measure rotation rates. Fast ring flipping was unexpected since aromatic side chains appeared rigidly oriented in the high-resolution crystal structures becoming available at that time. With new NMR instruments available I developed procedures for sequentially assigning the entire 1H NMR spectrum of BPTI, the first NMR assignment of a protein, and it appeared possible that with a skillful use of the nuclear Overhauser effect (NOE) it should be possible to determine protein structures with NMR. However, the first structure of BPTI I determined together with Werner Braun was of very low resolution due to the lack of better reconstruction software and was never published. When more powerful software packages were developed by Werner Braun and Tim Havel, I determined the structure of the protein metallothionein-2, which appeared entirely different from a X-ray structure of the same protein just published in Science; however, after much checking our NMR structure was found to be correct. After my time at the ETH I moved to the University of Michigan where we developed the first 1H-15N-13C triple resonance experiments and also started to measure 13C and 15N relaxation rates to characterize backbone dynamics of proteins. In 1990 I moved to Harvard Medical School and became very interested in tackling biological problems including proteins related to T-cell activation. Soon I became interested in translation initiation, and my group determined structures of several proteins that play key roles in protein synthesis. Subsequently, we discovered small molecule inhibitors of translation initiation that have anti-tumor activity, and we still pursue this research activity. More recently, my group focused on membrane proteins and we developed new procedures for covalently circularizing membrane scaffolding proteins to create well-defined membrane surrogates for structural and functional studies of membrane proteins. Host: Neal Woodbury

  • Technical Presentation
    "Engineering Phospholipid Nanodiscs for Membrane Protein Studies"

    Friday,4/44/2017
    3:40 PM, PSH-151

Abstract:
Biophysical studies of membrane proteins face multiple obstacles, including low expression yield, sample heterogeneity and the need for a membrane mimetic that resemble the native environment. When using NMR spectroscopy, additional problems are the large size of the systems and the need of incorporating stable isotope 13C, 15N and 2H. Micelles, or bicelles, which are frequently used for structural studies of membrane proteins, but have the disadvantage of the destabilizing effect of the detergents, in particular when the membrane proteins have water-soluble domains or interact with soluble proteins. Therefore, we embraced the use of phospholipid nanodiscs for membrane protein studies. Nanodiscs are patches of phospholipid bilayer surrounded by two copies of a membrane-scaffolding protein (Msp1), which is derived from apolipoprotein A1. We had shown that the Voltage-Dependent Anion Channel (VDAC1) can be inserted into nanodiscs and can be analyzed both in EM images and in NMR spectra. However, embedding was heterogeneous and prevented detailed NMR analysis. To address this problem and adapt nanodiscs to different size membrane proteins we first engineered Msp1 variants that yield nanodiscs at diameters of 9.5, 8.1, 7.8 and 6.8 nm, and we could determine an NMR structure of OmpX in the 8.1 nm nanodisc. However, the diameter distribution of these nanodiscs is rather wide. To further optimize nanodiscs, we developed procedures to covalently circularize the scaffolding protein and make nanodiscs of exactly defined diameters. We could extend the cND sizes from as low as 8 nm to as high as 50 nm each exhibiting a very narrow size distribution. We are able to insert membrane protein into the covalently circularized nanodiscs, record NMR spectra for smaller systems and obtain negative stain or cryo EM images from nanodisc-bound membrane proteins. We pursued applications from small mitochondrial membrane proteins to GPCRs and larger systems. Host: Neal Woodbury

Eyring Lecturer Fall & Spring 2016

Nobel Laureate Thomas R. Cech
Distinguished Professor, University of Colorado Boulder
Director, University of Colorado BioFrontiers Institute

- Nobel Prize in Chemistry 1989, National Medal of Science 1995

  • General Lecture
    "The Long Road to Precision Medicine: How Mutations Activate an “Immortality Gene” and Help Drive Cancer"

    Thursday, 11/03/2016
    6:30 PM, PSH-150

Abstract:
The practice of medicine has continually evolved towards greater precision. Now in the last decade, the availability of genomic and other –omic information has provided the opportunity for a quantum leap in precision. Yet the road towards precision medicine is long, and many obstacles interfere. Dr. Cech will give an example involving his own work on telomerase, which may perhaps contribute to more precise cancer treatment in the future. Host: Neal Woodbury and Julian Chen

  • Technical Presentation
    "LncRNAs, Histone Modification, and Epigenetic Silencing in Cancer"

    Friday, 11/04/2016
    3:40 PM, PSH-151

Abstract:
Polycomb repressive complex 2 (PRC2) is a multi-subunit complex, catalyzing trimethylation of H3K27 of nucleosomes. Such methylation marks promote epigenetic silencing of chromatin during embryonic development and cancer. Long noncoding (lnc) RNAs have been suggested to recruit PRC2 to its sites of action on chromatin. By studying the binding of PRC2 to RNA in vitro and in vivo, we and others have found that it binds RNA promiscuously – almost any RNA will bind. Yet we also find some special RNAs that have huge differences in affinity. How can we reconcile these observations, and what might they mean for epigenetic silencing? Host: Neal Woodbury and Julian Chen

Eyring Lecturer Fall & Spring 2015

Cynthia J. Burrows
Distinguished Professor, Thatcher Presidential Endowed Chair of Biological Chemistry
Department of Chemistry, The University of Utah

  • General Lecture
    "Peering into the Dark Matter of DNA: Structures and Functions beyond Watson & Crick"

    Thursday, 11/5/2015
    6:30 PM, PSH-151

Abstract:
Less than 2% of the human genome codes for the amino acid sequence of proteins. Why is all the rest of the DNA there? Some of it participates in orchestrating replication, some in the protection of the ends (telomeres), and some sections upstream of transcription start sites (promoters) control whether or not a gene is expressed as protein. All of these functions of DNA include guanine-rich sequences capable of folding into G-quadruplexes, four-stranded folds of DNA that differ dramatically from the classical base-pairing scheme of the Watson-Crick double helix. Furthermore, the G-rich sequences are sensitive to oxidative stress, converting to modified structures including 8-oxo-7,8-dihydroguanine (OG) and the hyperoxidized lesions spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh). Both the overall reactivity of a G residue in DNA or RNA and the final oxidized G product formed are highly dependent on sequence, solvent exposure and mechanism. For example, oxidation of G in G-quadruplex folds leads to very different outcomes compared to those in Watson-Crick B-helical duplexes. The location of G damage in turn has a profound effect on the stability of duplex vs. quadruplex structures. We propose that G-rich sequences respond to oxidative stress by selecting a secondary structure that can best accommodate the damaged base, and that ‘shape-shifting’ may be used as a signaling mechanism to affect transcription and repair. The implications are that nucleotide identity beyond the exome may be important in gene expression and disease, and that the definition of epigenetic modifications should be expanded to include guanine oxidation. Host: Dan Buttry

  • Technical Presentation
    “Single-Molecule Analysis of the Effects of Oxidative Stress on G:C-rich Sequences in DNA”

    Friday, 11/6/2015
    3:40 PM, PSH-151

Abstract:
Oxidative stress in the cell results in modifications to DNA and RNA bases and downstream events including effects on transcription and replication as well as signaling for repair. Ultimately, unrepaired damage in DNA leads to mutagenesis that is a contributing factor to cancer and other diseases. Our studies focus on base modifications arising from guanine (G) oxidation, including how and where they form in the genome. To investigate this, we have developed a single-molecule nanopore approach that is complementary to other biophysical techniques for interrogating nucleic acid structure. Specifically, the electrophoretic capture of DNA strands, either Watson-Crick duplexes or folded G-quadruplexes, inside a protein nanopore (alpha-hemolysin) embedded in a lipid bilayer provides information about the presence of oxidized bases as well as the dynamics of unfolding. In order to adapt this methodology to sequencing DNA for modified bases, we have developed a protocol for PCR amplification using a third base pair to mark the site of DNA modification. Host: Dan Buttry

Tobin J. Marks
Vladimir N. Ipatieff Professor of Chemistry and Professor of Materials Science and Engineering
Department of Chemistry, Materials Research Center, and the Argonne-Northwestern Solar Research Center, Northwestern University

  • General Lecture
    " Interface Science of Plastic Solar Cells"

    Thursday, 2/12/2015
    6:30 PM, PSH-150

Abstract:
Interface Science of Organic Photovoltaics Tobin J. Marks Department of Chemistry, Materials Research Center, and the Argonne-Northwestern Solar Research Center Northwestern University, Evanston IL 60208, USA The ability to fabricate molecularly tailored interfaces with nanoscale precision offers means to selectively modulate charge transport, molecular assembly, and exciton dynamics at hard matter-soft matter and soft-soft matter interfaces. Such interfaces can facilitate transport of the “correct charges” while blocking transport of the “incorrect charges” at the electrode-active layer interfaces of organic photovoltaic cells. This interfacial tailoring can also suppress carrier-trapping defect densities at interfaces and stabilize them with respect to physical/thermal de-cohesion. For soft matter-soft matter interfaces, interfacial tailoring can also facilitate exciton scission and photocurrent generation in such cells. In this lecture, challenges and opportunities in organic photovoltaic interface science are illustrated for four specific and interrelated areas of research: 1) controlling charge transport across hard matter(electrode)-soft matter interfaces in organic photovoltaic cells, 2) controlling charge transport by specific active layer nano/microstructural organization in the bulk active material and at the electrodes, 3) controlling exciton dynamics and carrier generation at donor-acceptor interfaces in the active layer, 4) designing transparent conducting electrodes with improved properties. It will be seen that such rational interface engineering along with improved bulk-heterojunction polymer structures guided by theoretical/computational analysis affords exceptional fill factors, solar power conversion efficiencies greater than 9%, and enhanced cell durability. Host: Dan Buttry

  • Technical Presentation
    "Thermochemically Leveraged Strategies for Biofeedstock Catalysis"

    Friday, 2/13/2015
    3:40 PM, PSH-151

Abstract:
Thermodynamic Strategies for New Catalytic Process Design. Biofeedstock Processing via Tandem C-O Hydrogenolysis Tobin J. Marks Northwestern University, Evanston IL 60208 USA t-marks@northwestern.edu Abstract This lecture focuses on thermodynamics/mechanism-based strategies for converting abundant biofeedstocks into useful chemicals. Thus, new approaches to the hydrogenolysis of C-O bonds are discussed with the ultimate goal being the processing of diverse biomass feedstocks. It is shown that selective hydrogenolysis of cyclic and linear etheric C-O bonds is effected by a tandem catalytic system consisting of recyclable metal triflate Lewis acids and supported palladium nanoparticles or related catalysts in either “green” ionic liquid solvents or in the neat substrates. In this tandem process, the metal homogeneous triflates catalyze the endothermic retro-hydroalkoxylation of the ether, with the supported palladium catalyst subsequently catalyzing the hydrogenation of the resulting intermediate alkenols, to afford saturated alkanols with high overall activity and selectivity. Kinetic and DFT computational studies show that the turnover-limiting step in these reactions is the retro-hydroalkoxylation, followed by rapid alkenol hydrogenation. Furthermore, the metal triflate catalytic activity scales approximately with the DFT-computed charge density on the triflate metal ion. With the most active of these catalysts, ethereal substrates are rapidly converted, via the alkenol, to the corresponding saturated hydrocarbons. In similar tandem processes, it is shown that esters and triglycerides are also rapidly and selectively converted to alcohols and, ultimately, to saturated hydrocarbons. The kinetics and mechanism of these ester hydrogenolysis processes, as deduced by experimental results and DFT computation, are compared and contrasted with those of the corresponding ethers Host: Dan Buttry

Eyring Lecturer Fall & Spring 2014

Peter G. Schultz
Professor of Chemistry, The Scripps Research Institute, La Jolla, CA

  • General Lecture
    "An Expanding Genetic Code"

    Thursday, 11/13/2014
    6:30 PM, PSH-152

     
  • Technical Presentation
    "A Chemist's Foray into Translational Research"

    Friday, 11/14/2014
    3:40 PM, PSH-151

Richard P. Van Duyne
Charles E. and Emma H. Morrison Professor of Chemistry, Professor of Biomedical Engineering, and Professor in the Applied Physics program at Northwestern University

  • General Lecture
    “Molecular Plasmonics: Nanoscale Spectroscopy and Sensing"

    Thursday, 2/20/2014
    7:30 PM, PSH-151

     
  • Technical Presentation
    “New Tools for the Study of Single Molecule Chemistry at the Atomic Length Scale and Femtosecond Time Scale”

    Friday, 2/21/2014
    3:40 PM, PSH-151

Eyring Lecturer Fall & Spring 2013

Carolyn Bertozzi
Department of Chemistry, Department of Molecular and Cell Biology, University of California Berkeley

  • GENERAL LECTURE
    Illuminating Sugars: The "dark matter" of the cell surface

    Thursday, October 31, 2013
    7:30 p.m., PSH-151

     
  • TECHNICAL PRESENTATION
    Bioorthogonal Chemistry: An enabling tool for biology and drug development

    Friday, November 1, 2013
    3:40 p.m., PSH-151

Geri Richmond
Richard M. and Patricia H. Noyes Professor,
Department of Chemistry , University of Oregon

  • GENERAL LECTURE
    At the Water’s Edge:

    Understanding Environmentally Important Processes at Aqueous Surfaces
    Thursday, February 7, 2013
    7:30 p.m., PSH-152

     
  • TECHNICAL PRESENTATION
    Line ‘Em All Up:

    Macromolecular and Nanoparticle Assembly at Liquid Surfaces
    Friday, February 8, 2013
    11:30 a.m., PSH-152

Eyring Lecturer Fall & Spring 2012

Carl Lineberger
E. U. Condon Distinguished Professor of Chemistry and Biochemistry
University of Colorado, Boulder

  • GENERAL LECTURE
    Anion Chemistry Research, and How it Led to “A Look Inside the World of Science and Technology Policy”.

    Thursday, 11/8/2012 7:30 PM, PS H151
     

  • TECHNICAL PRESENTATION
    Molecular Reaction Dynamics in Time and Frequency Domains: A Wonderful Playground for Collaboration between Experiment and Theory

    Friday, 11/9/2012 3:40 PM, PS H151

Kendall N. Houk
Department of Chemistry & Biochemistry
UCLA

  • GENERAL LECTURE
    "Designing New Enzymes"

    Thursday, January 26 7:30 p.m., PS H-150
     

  • TECHNICAL PRESENTATION
    "Dynamics, Mechanisms and Applications of Cycloadditions"

    Friday, January 27 3:30 p.m., PS H-151

More Eyring Lecturers

Eyring Lecturer Fall 2011
Professor C. Austen Angell

Regents' Professor of Chemistry
Chemistry & Biochemistry, Arizona State University

GENERAL LECTURE
"Cold water, world’s weirdest liquid, wants to be two of them (and seems to succeed near -140ºC)"
Thursday, October 27, 2011
7:30 p.m., PS H-150

TECHNICAL PRESENTATION
"Behavior of water as the Rosetta stone for the "strong/fragile" glassforming liquids problem"
Friday, October 28, 2011
3:30 p.m., PSH-150

Eyring Lecturer Spring 2011
Professor Omar Yaghi

Jean Stone Chair Professor in the Physical Sciences Professor of Chemistry & Biochemistry
University of California, Los Angeles

  • GENERAL LECTURE
    "Mr. Yaghi, Where are You From?
    A Journey Into Science and Society"

    Thursday, March 31, 2011
    7:30 p.m., PS F-166
     
  • TECHNICAL PRESENTATION
    "The 'Gene' Within Metal-Organic Frameworks"

    Friday, April 1, 2011
    3:30 p.m., PSF-166

Eyring Lecturer Fall 2010
Professor Gerald Joyce

Departments of Chemistry and Molecular Biology Investigator, The Skaggs Institute for Chemical Biology The Scripps Research Institute

  • GENERAL LECTURE
    "The Origin of Life in the Laboratory"

    Thursday, October 21 7:30 p.m., PS H-150
     
  • TECHNICAL PRESENTATION
    "Darwinian Evolution in the Laboratory"

    Friday, October 22 3:30 p.m., PSF-173

Eyring Lecturer Spring 2010
Professor Paul McMillan

Sir William Ramsay Professor of Chemistry & Materials Chemistry Centre University College of London

  • GENERAL LECTURE
    "Diamond and High Pressure Science"

    Thursday, April 29, 7:30 p.m., PS H-150
     
  • TECHNICAL PRESENTATION
    "From Materials Chemistry to High Pressure Biology"

    Monday, May 3, 3:30 p.m., PSC-101/103

Eyring Lecturer Spring 2010
Professor Jay Keasling

Hubbard Howe Distinguished Professor of Biochemical Engineering
University of California, Berkeley

  • GENERAL LECTURE
    "Life 2.0: Synthetic Biology"

    Thursday, March 25, 2010
    7:30 p.m., PS H-150
     
  • TECHNICAL PRESENTATION
    "Synthetic Biology for Synthetic Chemistry"

    Friday, March 26, 2010
    3:00 p.m., PS H-150

Eyring Lecturer Fall 2009
Professor Nathan Lewis

Chemistry & Chemical Engineering
California Institute of Technology

  • GENERAL LECTURE
    "Where in the World Will Our Energy Come From?"

    Thursday, September 10, 2009
    7:30 p.m., PS H-150
     
  • TECHNICAL PRESENTATION
    "Sunlight-Driven Hydrogen Formation By Membrane-Supported Photoelectrochemical Water Splitting"

    Friday, September 11, 2009
    3:30 p.m., PS H-150

Eyring Lecturer Spring 2009
Alexander Pines
Glenn T. Seaborg Professor of Chemistry
University of California, Berkeley

  • GENERAL LECTURE
    "NMR and MRI with Laser Detection and No Magnet"

    Thursday, February 12, 2009
    7:30 p.m., PS H-150 
     
  • TECHNICAL PRESENTATION
    "Some Recent Developments in Unconventional NMR and MRI"

    Friday, February 13, 2009
    3:30 p.m., PS H-150

Eyring Lecturer Fall 2008
Klaus Schulten
Swanlund Professor of Physics
University of Illinois at Urbana-Champaign

  • GENERAL LECTURE
    “Computational Microscopy the Living Cell”
    Thursday, Sep 18, 2008 7:30 p.m., PS H-150
     
  • TECHNICAL PRESENTATION
    “Physics of Photosynthesis in Purple Bacteria”
    Friday, September 19, 2008
    3:40 p.m., PS H-152

Eyring Lecturer Spring 2008
Gérard Férey

Member of the French Academy of Sciences
Professor of Materials Science Institut Lavoisier
Versailles University
France

  • GENERAL LECTURE
    “Porous Solids: A New World”

    Thursday, April 3 7:30 p.m., PS H-150
     
  • TECHNICAL PRESENTATION
    “The Breathing Effects in MOFs”

    Friday, April 4 3:00 p.m., PS H-150

Eyring Lecturer Spring 2007
A. Paul Alivisatos

Department of Chemistry
University of California, Berkeley

  • GENERAL LECTURE
    “Nanocrystal Molecules”

    Thursday, February 1 7:30 p.m., PS H-150
     
  • TECHNICAL PRESENTATION
    “Chemical Transformations in
    Nanocrystals”

    Friday, February 2 3:40 p.m., PS H-150

Eyring Lecturer Spring 2006
Graham R. Fleming

Melvin Calvin Distinguished Professor of Chemistry
Department of Chemistry
University of California, Berkeley

  • GENERAL LECTURE
    “Supplying the World's Energy Needs: Challenges and Potential Solutions”

    Thursday, March 9, 7:30 p.m., PS H-150
     
  • TECHNICAL PRESENTATION
    “The Chemical Physics of Photosynthetic
    Light Harvesting”

    Friday, March 10, 3:40 p.m., PS H-150

Eyring Lecturer Fall 2005
Michael O'Keeffe

Emeritus Regents' Professor
Department of Chemistry & Biochemistry
Arizona State University

Eyring Lecturer Spring 2005
Francis "Frank" DiSalvo

Professor of Physical Science
and Director of the Center for Materials Research
Cornell University

Eyring Lecturer Fall 2004
Mostafa El-Sayed
Laser Dynamics Laboratory
School of Chemistry and Biochemistry
Georgia Institute of Technology

Eyring Lecturer Spring 2004
Kurt Wüthrich

Professor of Biophysics
EidgenössischeTechnische
Hochschule (ETH)
Zürich, Switzerland

Visiting Professor of Structural Biology
The Scripps Research Institute
La Jolla, California

Eyring Lecturer Spring 2003
Barbara J. Finlayson-Pitts

University of California
Irvine, California

Eyring Lecturer Spring 2003
Sir John Meurig Thomas

Professor of Chemistry
University of Cambridge
Dept. of Materials Science and Metallurgy

1988 - 1989

  • Ahmed H. Zewail, California Institute of Technology
  • John B. Goodenough, University of Texas
  • Raymond Jeanloz, University of California, Berkeley
  • James B. Thompson, Harvard University

1989 - 1990

  • Leo Brewer, University of California, Berkeley
  • Ronald Breslow, Colombia University
  • Fred W. McLafferty, Cornell University
  • Donald H. Levy, University of Chicago

1990 - 1991

  • Robert J. Madix, Stanford University
  • Jacqueline K. Barton, California Institute of Technology

1991 - 1992

  • Stuart A. Rice, University of Chicago
  • Gabor A. Somorjai, University of California, Berkeley

1992 - 1993

  • Peter B. Dervan, California Institute of Technology
  • Yuan Tseh Lee, University of California, Berkeley

1993 - 1994

  • Harry B. Gray, California Institute of Technology
  • Derek A. Davenport, Purdue University

1994 - 1995

  • Jean-Marie Lehn, College de France

1995 - 1996

  • Richard E. Smalley, Rice University
  • Alexandra Navrotsky, University of California, Davis
  • Richard N. Zare, Stanford University

1996 - 1997

  • Thomas R. Cech, University of Colorado

1997 - 1998

  • Roald Hoffmann, Cornell University
  • Leroy Eyring, Arizona State University

1999 - 2000

  • John E. Walker, General Research Council of Molecular Biology

2000 - 2001

  • George Olah, University of Southern California
  • Robert Curl, Rice University

O'Keeffe

About the O'Keeffe Lecture Series

The O’Keeffe Lecture Series honors the scientific contributions of Regents Professor Michael O’Keeffe. It celebrates his seminal contributions to the study of crystalline inorganic solids, his role in the invention of reticular chemistry, and his important contributions to the reputation of Arizona State University as a place for innovative and impactful research.

Watch to learn more

O'Keeffe Lecture Fall 2022

Robert J. Cava
Russell Wellman Moore, Professor of Chemistry, Princeton University 

Finding New Materials – A Chemical Perspective

Finding new materials that are of interest to materials physicists is, in my view, best done by using the insights and tools of solid‐state chemistry to direct exploratory synthesis towards finding materials with potentially new electronic and magnetic properties. Unfortunately, however, most solid‐state chemists do not feel comfortable with the language of physics, and on the other side, materials physicists do not in general understand the complexities of chemistry and its language. I intend in this talk to describe some of the specific examples of new materials that we have found in recent years with a physics‐chemistry connection in mind, with a particular emphasis on the ones we found on doing syntheses at moderate pressures. Theoretical physicists, who I personally find to be lots of fun, seem even further in research culture from “bench chemists”, making connections with them even harder ‐ although it is the theorists who most often live in gardens of untested ideas. Some of the materials described in this talk you may find interesting and others not so interesting. The main idea is to keep trying, propose and find new materials to see what sticks, welcome collaborations, and never give up.

Download PDF

O'Keeffe Lecture Spring 2022

Joseph D. Puglisi

Jauch Professor, and Professor of Structural Biology at Stanford University School of Medicine

The Exquisite Choreography of Translation Initiation

Translation is the last step of gene expression and a point of extensive regulation. How an mRNA is chosen to be translated, how a translation start site is found at the 5’ end of an mRNA and how translation gets started at the correct site all remain a mystery, veiled by the dynamic nature of the process and myriad factors that guide it. We have developed and applied single‐molecule approaches merged with structural methods to observe and animate this process in higher organisms. Our goal is a direct real‐Ɵme movie of molecular processes underlying how proteins are made.

O'Keeffe Lecture Fall 2021

Omar Yaghi
Professor of Chemistry, Berkeley College of Chemistry

Reticular Chemistry and Materials for Water Harvesting from Air Anytime Anywhere

Water is essential to life. It is estimated that by 2050 nearly half of the world population will live in water stressed regions, due to either arid conditions or lack of access to clean water. This presentation outlines the parameters of this vexing societal problem and presents a solution to the global water challenge. Reticular Chemistry, a new branch of science has led to metal−organic frameworks (MOFs), which have emerged as a unique class of porous materials capable of trapping water at relative humidity levels as low as 10%, and doing so with facile uptake and release kinetics. From laboratory testing to field trials in the driest deserts, kilogram quantities of MOFs have been tested in several generations of devices. We show that the vision of having clean water from air anywhere in the world at any time of the year is potentially realizable with MOFs and so is the idea of giving “water independence” to the citizens of the world.

Watch the lecture here