Welcome to the Fall 2024 Seminar!
Fall 2024 Seminars will be on Fridays @ 3:00 pm in Biodesign Auditorium
If you have any questions regarding SMS seminars please contact: SMSSeminars@asu.edu
Seminar Calendar
Fall 2024 Seminars
August 23 Ryan Trovitch, Arizona State University - P&T Seminar
“Exploring the Limits and Applications of Earth-Abundant Metal Catalysis”
September 13 Stacy Copp, University of California, Irvin
“Sculpting atomically precise nanocluster emitters with DNA scaffolds”
September 20 Maxim Sukharev, Arizona State University
“Unveiling the dance of molecules in complex electromagnetic environments”
September 27 O'Keeffe Lecture: Sara Skarbalak, Indiana University-Bloomington
“Multimetallic Nanocrystals by Design”
October 4 Patrick Woodward, Ohio State University
“Studies of Magnetism and Metal-Metal Bonding in Hexagonal Perovskites”
October 18 O'Keeffe Lecture: Yuk-Ching Tse-Dinh, Florida International University
“Type IA topoisomerases - Universal regulator of DNA/RNA topology”
October 24 Eyring Lecture: W.E. Moerner, Stanford University
“TBD”
October 25 Eyring Lecture: W.E. Moerner, Stanford University
“TBD”
November 1 Mark Levin, University of Chicago
“TBD”
November 8 Lei Wang, University of Arizona
“TBD”
November 22 Brad Chmelka, University of California - Santa Barbara
“TBD”
December 6 Joseph Piccirilli, University of Chicago
“TBD”
Eyring
The Eyring Lectures in Chemistry and Biochemistry is an interdisciplinary distinguished lecturer series dedicated to stimulating discussions by renowned scientists who are at the cutting edge of their respective fields. Each lecture series consists of a lead-off presentation to help communicate the excitement and challenge of this central science to the University and community, followed by a more specialized colloquium to help bring the audience to the scientific frontiers of the topics under discussion. Speakers will be scholars in residence in the Department during their lecture series and will be available for informal discussions with faculty, students, and other interested individuals.
The Eyring Lectures in Chemistry and Biochemistry bears the name of our colleague LeRoy Eyring, Regents' Professor of Chemistry, whose extraordinary instructional and research accomplishments and professional leadership at Arizona State University helped to bring the School of Molecular Sciences into international prominence.
Ken Dill
Stony Brook University
- General Lecture
“The future of physical modeling of biomolecules and cells"
6pm Marston
Join us for a reception in ISTB4 5:00pm—5:40pm
March 28
Download PDF
- Technical Presentation
"The Origins of Life: An uncanny resemblance to the old Protein Folding Problem"
March 29
3:00 pm, NEEB 105
Download PDF
Chad Mirkin
Northwestern University
- General Lecture
“Foundational tools, techniques, and materials as outputs of the modern age of nanotechnology”"
6pm Marston
Join us for an outdoor reception on ISTB4 Patio 5:00pm—5:40pm
November 16
Download PDF
- Technical Presentation
"Repurposing the Blueprint for Life Through Colloidal Crystal Engineering with DNA”"
November 17
3:00 pm, Biodesign Auditorium
Download PDF
Jack Szostak
University of Chicago
- General Lecture
"The Origin of Life: Not as Hard as it Looks?"
6pm Marston
March 16
Download PDF
- Technical Presentation
"Why did Biology Begin with RNA and not some other Genetic Material?"
March 17
3:00 pm, Biodesign Auditorium
Download PDF
David Tirrell
California Institute of Technology
- General Lecture
Genetic Engineering of
Macromolecular and Cellular Materials
Thursday Nov 3
6 pm, Marston Theater (ISTB4)
- Technical Presentation
Selective Proteomic Analysis
of Cellular Sub‐populations in Complex Biological Systems
Friday Nov 4
2:30 pm, Biodesign Auditorium
Paul Weiss
University of California, Los Angeles
- General Lecture
Nanotechnology Approaches to
Biology and Medicine
Thursday March 17
2:30pm, Marston Theater (ISTB4)
- Technical Presentation
Atomically Precise Chemical, Physical,
Electronic, and Spin Contacts
Friday March 18
2:30pm, Biodesign Auditorium
Download PDF- March 17th Lecture || Download PDF- March 18th Lecture
Mario Capecchi
University of Utah
- General Lecture
The Making of a Scientist: An Unlikely Journey
Thursday Nov 4
6:00 PM, Armstrong 101
- Technical Presentation
Mutant Hoxb8 Microglia Are Causative for Chronic Anxiety and OCD‐Spectrum Disorders in Mice.
Friday Nov 5
2:30pm, Biodesign Auditorium
Download PDF- Nov 4th Lecture || Download PDF- Nov 5th Lecture
Steven Boxer
Camille Dreyfus Professor of Chemistry
Stanford University
- General Lecture
GFP - the Green Revolution Continues
Thursday, 11/14/2019
6:30 PM, PSH-153
Abstract:
Bioluminescence has fascinated scientists since ancient times – the green fluorescence from agitated jellyfish is an example and this comes from Green Fluorescent Protein (GFP). Since the discovery in the mid-1990’s that GFP can be expressed in essentially any organism, GFPs have become indispensable tools as genetically encoded fluorescent reporters. A bewildering array of variants has been developed leading to a wide pallet of colors and photo-switching characteristics that are essential for super-resolution microscopy. Our lab was involved in early studies of excited state properties of GFP that led to the discovery that the GFP chromophore is a photoacid – this has many consequences for further protein design and is related to the natural function of this unusual protein. Beyond applications in imaging, GFPs are a wonderful model system for probing the spectroscopic and functional consequences of the interaction between a prosthetic group and the protein surrounding it. I will discuss several examples related to photoisomerization of the chromophore. (1) We have systematically altered the electrostatic properties of the GFP chromophore in a photo-switchable variant using amber suppression to introduce electron-donating and -withdrawing groups to the phenolate ring. The contributions of sterics and electrostatics can be evaluated quantitatively and used to demonstrate how electrostatic effects bias the pathway of chromophore isomerization. (2) Split GFPs are made from protein fragments whose reassembly leads to a fluorescent readout. By chance, we discovered that split -strands can be photo- dissociated, i.e. split GFP is a genetically encoded caged protein. The mechanism of this unusual process will be discussed along with possible applications as optogenetic tools. Host: Neal Woodbury
- Technical Presentation
Electric Fields and Enzyme Catalysis
Fridays, 11/15/2019
1:30 PM, in Biodesign B (BDB) Auditorium B105
Abstract:
We have developed the vibrational Stark effect to probe electrostatics and dynamics in organized systems, in particular in proteins where vibrational probes can report on functionally important electric fields. The strategy involves deploying site-specific vibrational probes whose sensitivity to an electric field is measured in a calibrated external electric field. Once calibrated, these probes, typically nitriles or carbonyls, can be used to probe changes in electric field due to mutations, ligand binding, pH effects, light-induced structural changes, etc. We can also obtain information on absolute fields by combining vibrational solvatochromism and MD simulations, checked by the vibrational Stark effect calibration. This frequency-field calibration can be applied to quantify functionally relevant electric fields at the active site of enzymes. Using ketosteroid isomerase as a model system, we correlate the field sensed at the bond involved in enzymatic catalysis with the rate of the reaction it catalyzes, including variations in this rate in a series of mutants and variants using non-canonical amino acids. This provides the first direct connection between electric fields and function: for this system electrostatic interactions are a dominant contribution to catalytic proficiency. Using the vibrational Stark effect, we can now consistently re-interpret results already in the literature and provide a framework for parsing the electrostatic contribution to catalysis in both biological and non-biological systems. Extensions of this approach to other classes of enzymes, to effects of electrostatics on pathways of photoisomerization in proteins, and to the evolutionary trajectories of enzymes responsible for antibiotic resistance will be described if time permits. Host: Neal Woodbury
Dean Emily Carter
Princeton University
- General Lecture
"Sustainable Energy Materials from First Principles "
Thursday, March 21, 2019
6:30 PM, PSH-153
Abstract:
I believe that we scientists and engineers have a responsibility to use our skills to improve life for all Earth’s inhabitants. To this end, for the past dozen years, I have used my skills - in developing and applying quantum mechanics simulation methods aimed at complex phenomena difficult to probe experimentally - to help accelerate discovery, understanding, and optimization of materials for sustainable energy conversion processes. These range from materials for converting sunlight and other renewable energy sources to fuels and electricity, to biodiesel fuels, to clean electricity production from solid oxide fuel cells and nuclear fusion reactors, to lightweight metal alloys for fuel-efficient vehicles. During this talk, I will focus on potential technological advances in materials science, nanoscale optics, and electrochemistry that could someday create a virtuous cycle, exploiting energy from sunlight and molecules in air, water, and carbon dioxide to synthesize the fuels and chemicals needed to sustain future generations.
Sunney Xie
Department of Chemistry and Chemical Biology
Harvard University & Peking University
- Technical Presentation
"Stimulated Raman Scattering Microscopy: Seeing the Invisible in Biology and Medicine"
Wednesday, 10/24/2018
3:30 PM
Biodesign Auditorium BDB105
Abstract:
Stimulated Raman scattering (SRS) microscopy is a label-free and noninvasive imaging technique using vibration spectroscopy as the contrast mechanism. Recent advances have allowed significant improvements in sensitivity, selectivity, robustness, and cost reduction, opening a wide range of applications. This is particularly relevant in biology since SRS microscopy does not affect cell function, and is best suited for imaging small metabolite molecules. For medicine, SRS microscopy provides instant tissue examination without the need of previous histological staining procedures. Host: Neal Woodbury and Jia Guo
- General Lecture
"Life at the Single Molecule Level: From Single Molecule Enzymology to Single Cell Genomics"
Thursday, 10/25/2018
6:30 PM, PSH-153
Abstract:
Since the 1990s, developments in room-temperature single-molecule spectroscopy, imaging, and manipulation have allowed studies of single-molecule behaviors in vitro and in living cells. Unlike conventional ensemble studies, single-molecule enzymology is characterized by ubiquitous fluctuations of molecular properties. The understanding of such single-molecule stochasticity is pertinent to many life processes. DNA exists as single molecules in an individual cell. Consequently, gene expression is stochastic. Single-molecule gene expression experiments in live single cells have allowed quantitative description and mechanistic interpretations. The fact that there are 46 different individual DNA molecules (chromosomes) in a human cell dictates that genomic variations, such as copy-number variations (CNVs) and single nucleotide variations (SNVs), occur stochastically and cannot be synchronized among individual cells. Probing such genomic variations requires single-cell and single-molecule measurements, which have only recently become possible. These studies are difficult since they require the amplification of the minute amount of DNA of a single cell, and existing single-cell whole genome amplification (WGA) methods have been limited by low accuracy of CNV and SNV detection. We have developed transposase-based methods for single-cell WGA, which have superseded previous methods. With the improved genome coverage of our new WGA method, we developed a high-resolution single-cell chromatin conformation capture method, which allows for the first 3D genome map of a human diploid cell. We have also developed a method for single-cell transcriptome with better detection efficiency and accuracy, revealing intrinsic correlations among all detected mRNAs in a single-cell. Host: Neal Woodbury and Jia Guo
David Baker
Professor of Biochemistry
Head of the Institute for Protein Design
Department of Chemistry
University of Washington
- General Lecture
"The Coming of Age of De Novo Protein Design"
Thursday, 3/29/2018
6:30 PM, PSH-150
Abstract:
The advances in de novo protein design described in my first talk are opening up many new exciting areas of application. I will describe our efforts towards designing next generation therapeutics, vaccines and functional nanomaterials with applications ranging from computing to light harvesting. Host: Neal Woodbury and Jeremy Mills
- Technical Presentation
"Recent Advances in Olefin Metathesis by Molybdenum and Tungsten Catalysts"
Friday,13/30/2018
3:40 PM, PSH-151
Abstract:
Proteins mediate the critical processes of life and beautifully solve the challenges faced during the evolution of modern organisms. Our goal is to design a new generation of proteins that address current day problems not faced during evolution. In contrast to traditional protein engineering efforts, which have focused on modifying naturally occurring proteins, we design new proteins from scratch based on Anfinsen’s principle that proteins fold to their global free energy minimum. We compute amino acid sequences predicted to fold into proteins with new structures and functions, produce synthetic genes encoding these sequences, and characterize them experimentally. I will describe the design of ultra-stable idealized proteins, flu neutralizing proteins, high affinity ligand binding proteins, and self-assembling protein nanomaterials. I will also describe the contributions of the general public to these efforts through the distributed computing project Rosetta@Home and the online protein folding and design game Foldit. Host: Neal Woodboury and Jeremy Mills
Richard Royce Schrock
F G Keyes Professor of Chemistry
MIT Chemistry
- General Lecture
"A Discovery and a Nobel Prize 30 years Later";
Thursday, 10/19/2017
6:30 PM, PSH-150
Abstract:
A catalytic reaction discovered in the 1960s allows one to break carbon-carbon double bonds and form new ones with remarkable ease. This "metathesis" reaction began to attract the interest of organic, inorganic, and polymer chemists because of its great potential in manipulating carbon-carbon bonds, which is a fundamental goal of organic chemistry. The metathesis reaction has continued to change how chemistry that involves carbon-carbon double bonds, in particular, is practiced in the laboratory and industry. In 1974 I was in the right place at the right time to make a discovery that helped us understand how this reaction works and have spent my career developing catalysts for it. In the process I also discovered catalysts that "metathesize" carbon-carbon triple bonds and one that will "break" the triple bond in dinitrogen (to give ammonia catalytically), a reaction that is crucial to all life on earth. Host: Neal Woodbury
- Technical Presentation
"Recent Advances in Olefin Metathesis by Molybdenum and Tungsten Catalysts"
Friday,10/20/2017
3:40 PM, PSH-151
Abstract:
Advances in applications of the chemistry of Mo and W olefin metathesis catalysts in the last two years include the synthesis of monoaryloxide chloride imido catalysts, kinetically Z- or E-selective catalytic macrocyclic ring-closing metathesis, stereoselective (Z or E) olefin metathesis reactions that use electron-poor olefins (ClCH=CHCl and CF3CH=CHCF3), and ROMP reactions that yield cis,syndiotactic-A-alt-B copolymers from enantiomerically pure monomers. New applications rely on synthetic advances that include new approaches to monoaryloxide chloride complexes, to rare molybdenum oxo alkylidene complexes, and to previously unknown Mo=CHCl and Mo=CHCF3 complexes, which must be involved in reactions with the electron-poor olefins ClCH=CHCl and CF3CH=CHCF3. Host: Neal Woodbury
Gerhard Wagner
Professor, Department of Biological Chemistry and Molecular Pharmacology
Harvard Medical School
- General Lecture
"Solution NMR: from a Chemist's Tool to Solving Protein";
Thursday, 4/13/2017
6:30 PM, PSH-150
Abstract:
When I became interested in biophysics little had been done in protein NMR. Mainly chemists used NMR to check the success and purity of their reaction products. As undergraduate physics student at the Technical University of Munich, I had worked on Mössbauer effect studies hemoglobins and ferredoxins. While this technology yields spectra with a small number of resonance lines, I learned that NMR spectroscopy of the same class of proteins could yield spectra with numerous resonances as was shown at Bell Labs in the Shulman group. The discoverer of the paramagnetically shifted heme resonances, Kurt Wüthrich had just moved to the ETH in Zürich, and I decided to join his group as a graduate student. Thus, I entered the field of protein NMR at an early stage. First, I focused on internal motions of proteins and discovered that aromatic side chains of the basic pancreatic trypsin inhibitor (BPTI) rotate fast or slowly depending on their location, and NMR could measure rotation rates. Fast ring flipping was unexpected since aromatic side chains appeared rigidly oriented in the high-resolution crystal structures becoming available at that time. With new NMR instruments available I developed procedures for sequentially assigning the entire 1H NMR spectrum of BPTI, the first NMR assignment of a protein, and it appeared possible that with a skillful use of the nuclear Overhauser effect (NOE) it should be possible to determine protein structures with NMR. However, the first structure of BPTI I determined together with Werner Braun was of very low resolution due to the lack of better reconstruction software and was never published. When more powerful software packages were developed by Werner Braun and Tim Havel, I determined the structure of the protein metallothionein-2, which appeared entirely different from a X-ray structure of the same protein just published in Science; however, after much checking our NMR structure was found to be correct. After my time at the ETH I moved to the University of Michigan where we developed the first 1H-15N-13C triple resonance experiments and also started to measure 13C and 15N relaxation rates to characterize backbone dynamics of proteins. In 1990 I moved to Harvard Medical School and became very interested in tackling biological problems including proteins related to T-cell activation. Soon I became interested in translation initiation, and my group determined structures of several proteins that play key roles in protein synthesis. Subsequently, we discovered small molecule inhibitors of translation initiation that have anti-tumor activity, and we still pursue this research activity. More recently, my group focused on membrane proteins and we developed new procedures for covalently circularizing membrane scaffolding proteins to create well-defined membrane surrogates for structural and functional studies of membrane proteins. Host: Neal Woodbury
- Technical Presentation
"Engineering Phospholipid Nanodiscs for Membrane Protein Studies"
Friday,4/44/2017
3:40 PM, PSH-151
Abstract:
Biophysical studies of membrane proteins face multiple obstacles, including low expression yield, sample heterogeneity and the need for a membrane mimetic that resemble the native environment. When using NMR spectroscopy, additional problems are the large size of the systems and the need of incorporating stable isotope 13C, 15N and 2H. Micelles, or bicelles, which are frequently used for structural studies of membrane proteins, but have the disadvantage of the destabilizing effect of the detergents, in particular when the membrane proteins have water-soluble domains or interact with soluble proteins. Therefore, we embraced the use of phospholipid nanodiscs for membrane protein studies. Nanodiscs are patches of phospholipid bilayer surrounded by two copies of a membrane-scaffolding protein (Msp1), which is derived from apolipoprotein A1. We had shown that the Voltage-Dependent Anion Channel (VDAC1) can be inserted into nanodiscs and can be analyzed both in EM images and in NMR spectra. However, embedding was heterogeneous and prevented detailed NMR analysis. To address this problem and adapt nanodiscs to different size membrane proteins we first engineered Msp1 variants that yield nanodiscs at diameters of 9.5, 8.1, 7.8 and 6.8 nm, and we could determine an NMR structure of OmpX in the 8.1 nm nanodisc. However, the diameter distribution of these nanodiscs is rather wide. To further optimize nanodiscs, we developed procedures to covalently circularize the scaffolding protein and make nanodiscs of exactly defined diameters. We could extend the cND sizes from as low as 8 nm to as high as 50 nm each exhibiting a very narrow size distribution. We are able to insert membrane protein into the covalently circularized nanodiscs, record NMR spectra for smaller systems and obtain negative stain or cryo EM images from nanodisc-bound membrane proteins. We pursued applications from small mitochondrial membrane proteins to GPCRs and larger systems. Host: Neal Woodbury
Nobel Laureate Thomas R. Cech
Distinguished Professor, University of Colorado Boulder
Director, University of Colorado BioFrontiers Institute
- Nobel Prize in Chemistry 1989, National Medal of Science 1995
- General Lecture
"The Long Road to Precision Medicine: How Mutations Activate an “Immortality Gene” and Help Drive Cancer"
Thursday, 11/03/2016
6:30 PM, PSH-150
Abstract:
The practice of medicine has continually evolved towards greater precision. Now in the last decade, the availability of genomic and other –omic information has provided the opportunity for a quantum leap in precision. Yet the road towards precision medicine is long, and many obstacles interfere. Dr. Cech will give an example involving his own work on telomerase, which may perhaps contribute to more precise cancer treatment in the future. Host: Neal Woodbury and Julian Chen
- Technical Presentation
"LncRNAs, Histone Modification, and Epigenetic Silencing in Cancer"
Friday, 11/04/2016
3:40 PM, PSH-151
Abstract:
Polycomb repressive complex 2 (PRC2) is a multi-subunit complex, catalyzing trimethylation of H3K27 of nucleosomes. Such methylation marks promote epigenetic silencing of chromatin during embryonic development and cancer. Long noncoding (lnc) RNAs have been suggested to recruit PRC2 to its sites of action on chromatin. By studying the binding of PRC2 to RNA in vitro and in vivo, we and others have found that it binds RNA promiscuously – almost any RNA will bind. Yet we also find some special RNAs that have huge differences in affinity. How can we reconcile these observations, and what might they mean for epigenetic silencing? Host: Neal Woodbury and Julian Chen
Cynthia J. Burrows
Distinguished Professor, Thatcher Presidential Endowed Chair of Biological Chemistry
Department of Chemistry, The University of Utah
- General Lecture
"Peering into the Dark Matter of DNA: Structures and Functions beyond Watson & Crick"
Thursday, 11/5/2015
6:30 PM, PSH-151
Abstract:
Less than 2% of the human genome codes for the amino acid sequence of proteins. Why is all the rest of the DNA there? Some of it participates in orchestrating replication, some in the protection of the ends (telomeres), and some sections upstream of transcription start sites (promoters) control whether or not a gene is expressed as protein. All of these functions of DNA include guanine-rich sequences capable of folding into G-quadruplexes, four-stranded folds of DNA that differ dramatically from the classical base-pairing scheme of the Watson-Crick double helix. Furthermore, the G-rich sequences are sensitive to oxidative stress, converting to modified structures including 8-oxo-7,8-dihydroguanine (OG) and the hyperoxidized lesions spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh). Both the overall reactivity of a G residue in DNA or RNA and the final oxidized G product formed are highly dependent on sequence, solvent exposure and mechanism. For example, oxidation of G in G-quadruplex folds leads to very different outcomes compared to those in Watson-Crick B-helical duplexes. The location of G damage in turn has a profound effect on the stability of duplex vs. quadruplex structures. We propose that G-rich sequences respond to oxidative stress by selecting a secondary structure that can best accommodate the damaged base, and that ‘shape-shifting’ may be used as a signaling mechanism to affect transcription and repair. The implications are that nucleotide identity beyond the exome may be important in gene expression and disease, and that the definition of epigenetic modifications should be expanded to include guanine oxidation. Host: Dan Buttry
- Technical Presentation
“Single-Molecule Analysis of the Effects of Oxidative Stress on G:C-rich Sequences in DNA”
Friday, 11/6/2015
3:40 PM, PSH-151
Abstract:
Oxidative stress in the cell results in modifications to DNA and RNA bases and downstream events including effects on transcription and replication as well as signaling for repair. Ultimately, unrepaired damage in DNA leads to mutagenesis that is a contributing factor to cancer and other diseases. Our studies focus on base modifications arising from guanine (G) oxidation, including how and where they form in the genome. To investigate this, we have developed a single-molecule nanopore approach that is complementary to other biophysical techniques for interrogating nucleic acid structure. Specifically, the electrophoretic capture of DNA strands, either Watson-Crick duplexes or folded G-quadruplexes, inside a protein nanopore (alpha-hemolysin) embedded in a lipid bilayer provides information about the presence of oxidized bases as well as the dynamics of unfolding. In order to adapt this methodology to sequencing DNA for modified bases, we have developed a protocol for PCR amplification using a third base pair to mark the site of DNA modification. Host: Dan Buttry
Tobin J. Marks
Vladimir N. Ipatieff Professor of Chemistry and Professor of Materials Science and Engineering
Department of Chemistry, Materials Research Center, and the Argonne-Northwestern Solar Research Center, Northwestern University
- General Lecture
" Interface Science of Plastic Solar Cells"
Thursday, 2/12/2015
6:30 PM, PSH-150
Abstract:
Interface Science of Organic Photovoltaics Tobin J. Marks Department of Chemistry, Materials Research Center, and the Argonne-Northwestern Solar Research Center Northwestern University, Evanston IL 60208, USA The ability to fabricate molecularly tailored interfaces with nanoscale precision offers means to selectively modulate charge transport, molecular assembly, and exciton dynamics at hard matter-soft matter and soft-soft matter interfaces. Such interfaces can facilitate transport of the “correct charges” while blocking transport of the “incorrect charges” at the electrode-active layer interfaces of organic photovoltaic cells. This interfacial tailoring can also suppress carrier-trapping defect densities at interfaces and stabilize them with respect to physical/thermal de-cohesion. For soft matter-soft matter interfaces, interfacial tailoring can also facilitate exciton scission and photocurrent generation in such cells. In this lecture, challenges and opportunities in organic photovoltaic interface science are illustrated for four specific and interrelated areas of research: 1) controlling charge transport across hard matter(electrode)-soft matter interfaces in organic photovoltaic cells, 2) controlling charge transport by specific active layer nano/microstructural organization in the bulk active material and at the electrodes, 3) controlling exciton dynamics and carrier generation at donor-acceptor interfaces in the active layer, 4) designing transparent conducting electrodes with improved properties. It will be seen that such rational interface engineering along with improved bulk-heterojunction polymer structures guided by theoretical/computational analysis affords exceptional fill factors, solar power conversion efficiencies greater than 9%, and enhanced cell durability. Host: Dan Buttry
- Technical Presentation
"Thermochemically Leveraged Strategies for Biofeedstock Catalysis"
Friday, 2/13/2015
3:40 PM, PSH-151
Abstract:
Thermodynamic Strategies for New Catalytic Process Design. Biofeedstock Processing via Tandem C-O Hydrogenolysis Tobin J. Marks Northwestern University, Evanston IL 60208 USA t-marks@northwestern.edu Abstract This lecture focuses on thermodynamics/mechanism-based strategies for converting abundant biofeedstocks into useful chemicals. Thus, new approaches to the hydrogenolysis of C-O bonds are discussed with the ultimate goal being the processing of diverse biomass feedstocks. It is shown that selective hydrogenolysis of cyclic and linear etheric C-O bonds is effected by a tandem catalytic system consisting of recyclable metal triflate Lewis acids and supported palladium nanoparticles or related catalysts in either “green” ionic liquid solvents or in the neat substrates. In this tandem process, the metal homogeneous triflates catalyze the endothermic retro-hydroalkoxylation of the ether, with the supported palladium catalyst subsequently catalyzing the hydrogenation of the resulting intermediate alkenols, to afford saturated alkanols with high overall activity and selectivity. Kinetic and DFT computational studies show that the turnover-limiting step in these reactions is the retro-hydroalkoxylation, followed by rapid alkenol hydrogenation. Furthermore, the metal triflate catalytic activity scales approximately with the DFT-computed charge density on the triflate metal ion. With the most active of these catalysts, ethereal substrates are rapidly converted, via the alkenol, to the corresponding saturated hydrocarbons. In similar tandem processes, it is shown that esters and triglycerides are also rapidly and selectively converted to alcohols and, ultimately, to saturated hydrocarbons. The kinetics and mechanism of these ester hydrogenolysis processes, as deduced by experimental results and DFT computation, are compared and contrasted with those of the corresponding ethers Host: Dan Buttry
Peter G. Schultz
Professor of Chemistry, The Scripps Research Institute, La Jolla, CA
- General Lecture
"An Expanding Genetic Code"
Thursday, 11/13/2014
6:30 PM, PSH-152
- Technical Presentation
"A Chemist's Foray into Translational Research"
Friday, 11/14/2014
3:40 PM, PSH-151
Richard P. Van Duyne
Charles E. and Emma H. Morrison Professor of Chemistry, Professor of Biomedical Engineering, and Professor in the Applied Physics program at Northwestern University
- General Lecture
“Molecular Plasmonics: Nanoscale Spectroscopy and Sensing"
Thursday, 2/20/2014
7:30 PM, PSH-151
- Technical Presentation
“New Tools for the Study of Single Molecule Chemistry at the Atomic Length Scale and Femtosecond Time Scale”
Friday, 2/21/2014
3:40 PM, PSH-151
Carolyn Bertozzi
Department of Chemistry, Department of Molecular and Cell Biology, University of California Berkeley
- GENERAL LECTURE
Illuminating Sugars: The "dark matter" of the cell surface
Thursday, October 31, 2013
7:30 p.m., PSH-151
- TECHNICAL PRESENTATION
Bioorthogonal Chemistry: An enabling tool for biology and drug development
Friday, November 1, 2013
3:40 p.m., PSH-151
Geri Richmond
Richard M. and Patricia H. Noyes Professor,
Department of Chemistry , University of Oregon
- GENERAL LECTURE
At the Water’s Edge:
Understanding Environmentally Important Processes at Aqueous Surfaces
Thursday, February 7, 2013
7:30 p.m., PSH-152
- TECHNICAL PRESENTATION
Line ‘Em All Up:
Macromolecular and Nanoparticle Assembly at Liquid Surfaces
Friday, February 8, 2013
11:30 a.m., PSH-152
Carl Lineberger
E. U. Condon Distinguished Professor of Chemistry and Biochemistry
University of Colorado, Boulder
- GENERAL LECTURE
Anion Chemistry Research, and How it Led to “A Look Inside the World of Science and Technology Policy”.
Thursday, 11/8/2012 7:30 PM, PS H151
- TECHNICAL PRESENTATION
Molecular Reaction Dynamics in Time and Frequency Domains: A Wonderful Playground for Collaboration between Experiment and Theory
Friday, 11/9/2012 3:40 PM, PS H151
Kendall N. Houk
Department of Chemistry & Biochemistry
UCLA
- GENERAL LECTURE
"Designing New Enzymes"
Thursday, January 26 7:30 p.m., PS H-150
- TECHNICAL PRESENTATION
"Dynamics, Mechanisms and Applications of Cycloadditions"
Friday, January 27 3:30 p.m., PS H-151
Eyring Lecturer Fall 2011
Professor C. Austen Angell
Regents' Professor of Chemistry
Chemistry & Biochemistry, Arizona State University
GENERAL LECTURE
"Cold water, world’s weirdest liquid, wants to be two of them (and seems to succeed near -140ºC)"
Thursday, October 27, 2011
7:30 p.m., PS H-150
TECHNICAL PRESENTATION
"Behavior of water as the Rosetta stone for the "strong/fragile" glassforming liquids problem"
Friday, October 28, 2011
3:30 p.m., PSH-150
Eyring Lecturer Spring 2011
Professor Omar Yaghi
Jean Stone Chair Professor in the Physical Sciences Professor of Chemistry & Biochemistry
University of California, Los Angeles
- GENERAL LECTURE
"Mr. Yaghi, Where are You From?
A Journey Into Science and Society"
Thursday, March 31, 2011
7:30 p.m., PS F-166
- TECHNICAL PRESENTATION
"The 'Gene' Within Metal-Organic Frameworks"
Friday, April 1, 2011
3:30 p.m., PSF-166
Eyring Lecturer Fall 2010
Professor Gerald Joyce
Departments of Chemistry and Molecular Biology Investigator, The Skaggs Institute for Chemical Biology The Scripps Research Institute
- GENERAL LECTURE
"The Origin of Life in the Laboratory"
Thursday, October 21 7:30 p.m., PS H-150
- TECHNICAL PRESENTATION
"Darwinian Evolution in the Laboratory"
Friday, October 22 3:30 p.m., PSF-173
Eyring Lecturer Spring 2010
Professor Paul McMillan
Sir William Ramsay Professor of Chemistry & Materials Chemistry Centre University College of London
- GENERAL LECTURE
"Diamond and High Pressure Science"
Thursday, April 29, 7:30 p.m., PS H-150
- TECHNICAL PRESENTATION
"From Materials Chemistry to High Pressure Biology"
Monday, May 3, 3:30 p.m., PSC-101/103
Eyring Lecturer Spring 2010
Professor Jay Keasling
Hubbard Howe Distinguished Professor of Biochemical Engineering
University of California, Berkeley
- GENERAL LECTURE
"Life 2.0: Synthetic Biology"
Thursday, March 25, 2010
7:30 p.m., PS H-150
- TECHNICAL PRESENTATION
"Synthetic Biology for Synthetic Chemistry"
Friday, March 26, 2010
3:00 p.m., PS H-150
Eyring Lecturer Fall 2009
Professor Nathan Lewis
Chemistry & Chemical Engineering
California Institute of Technology
- GENERAL LECTURE
"Where in the World Will Our Energy Come From?"
Thursday, September 10, 2009
7:30 p.m., PS H-150
- TECHNICAL PRESENTATION
"Sunlight-Driven Hydrogen Formation By Membrane-Supported Photoelectrochemical Water Splitting"
Friday, September 11, 2009
3:30 p.m., PS H-150
Eyring Lecturer Spring 2009
Alexander Pines
Glenn T. Seaborg Professor of Chemistry
University of California, Berkeley
- GENERAL LECTURE
"NMR and MRI with Laser Detection and No Magnet"
Thursday, February 12, 2009
7:30 p.m., PS H-150
- TECHNICAL PRESENTATION
"Some Recent Developments in Unconventional NMR and MRI"
Friday, February 13, 2009
3:30 p.m., PS H-150
Eyring Lecturer Fall 2008
Klaus Schulten
Swanlund Professor of Physics
University of Illinois at Urbana-Champaign
- GENERAL LECTURE
“Computational Microscopy the Living Cell”
Thursday, Sep 18, 2008 7:30 p.m., PS H-150
- TECHNICAL PRESENTATION
“Physics of Photosynthesis in Purple Bacteria”
Friday, September 19, 2008
3:40 p.m., PS H-152
Eyring Lecturer Spring 2008
Gérard Férey
Member of the French Academy of Sciences
Professor of Materials Science Institut Lavoisier
Versailles University
France
- GENERAL LECTURE
“Porous Solids: A New World”
Thursday, April 3 7:30 p.m., PS H-150
- TECHNICAL PRESENTATION
“The Breathing Effects in MOFs”
Friday, April 4 3:00 p.m., PS H-150
Eyring Lecturer Spring 2007
A. Paul Alivisatos
Department of Chemistry
University of California, Berkeley
- GENERAL LECTURE
“Nanocrystal Molecules”
Thursday, February 1 7:30 p.m., PS H-150
- TECHNICAL PRESENTATION
“Chemical Transformations in
Nanocrystals”
Friday, February 2 3:40 p.m., PS H-150
Eyring Lecturer Spring 2006
Graham R. Fleming
Melvin Calvin Distinguished Professor of Chemistry
Department of Chemistry
University of California, Berkeley
- GENERAL LECTURE
“Supplying the World's Energy Needs: Challenges and Potential Solutions”
Thursday, March 9, 7:30 p.m., PS H-150
- TECHNICAL PRESENTATION
“The Chemical Physics of Photosynthetic
Light Harvesting”
Friday, March 10, 3:40 p.m., PS H-150
Eyring Lecturer Fall 2005
Michael O'Keeffe
Emeritus Regents' Professor
Department of Chemistry & Biochemistry
Arizona State University
Eyring Lecturer Spring 2005
Francis "Frank" DiSalvo
Professor of Physical Science
and Director of the Center for Materials Research
Cornell University
Eyring Lecturer Fall 2004
Mostafa El-Sayed
Laser Dynamics Laboratory
School of Chemistry and Biochemistry
Georgia Institute of Technology
Eyring Lecturer Spring 2004
Kurt Wüthrich
Professor of Biophysics
EidgenössischeTechnische
Hochschule (ETH)
Zürich, Switzerland
Visiting Professor of Structural Biology
The Scripps Research Institute
La Jolla, California
Eyring Lecturer Spring 2003
Barbara J. Finlayson-Pitts
University of California
Irvine, California
Eyring Lecturer Spring 2003
Sir John Meurig Thomas
Professor of Chemistry
University of Cambridge
Dept. of Materials Science and Metallurgy
1988 - 1989
- Ahmed H. Zewail, California Institute of Technology
- John B. Goodenough, University of Texas
- Raymond Jeanloz, University of California, Berkeley
- James B. Thompson, Harvard University
1989 - 1990
- Leo Brewer, University of California, Berkeley
- Ronald Breslow, Colombia University
- Fred W. McLafferty, Cornell University
- Donald H. Levy, University of Chicago
1990 - 1991
- Robert J. Madix, Stanford University
- Jacqueline K. Barton, California Institute of Technology
1991 - 1992
- Stuart A. Rice, University of Chicago
- Gabor A. Somorjai, University of California, Berkeley
1992 - 1993
- Peter B. Dervan, California Institute of Technology
- Yuan Tseh Lee, University of California, Berkeley
1993 - 1994
- Harry B. Gray, California Institute of Technology
- Derek A. Davenport, Purdue University
1994 - 1995
- Jean-Marie Lehn, College de France
1995 - 1996
- Richard E. Smalley, Rice University
- Alexandra Navrotsky, University of California, Davis
- Richard N. Zare, Stanford University
1996 - 1997
- Thomas R. Cech, University of Colorado
1997 - 1998
- Roald Hoffmann, Cornell University
- Leroy Eyring, Arizona State University
1999 - 2000
- John E. Walker, General Research Council of Molecular Biology
2000 - 2001
- George Olah, University of Southern California
- Robert Curl, Rice University
O'Keeffe
The O’Keeffe Lecture Series honors the scientific contributions of Regents Professor Michael O’Keeffe. It celebrates his seminal contributions to the study of crystalline inorganic solids, his role in the invention of reticular chemistry, and his important contributions to the reputation of Arizona State University as a place for innovative and impactful research.
Neal Devaraj
Membrane Mimetic Chemistry in Synthetic and Living Cells
February 9
Lipid membranes in cells are fluid structures that undergo constant synthesis, remodeling, fission, and fusion. The dynamic nature of lipid membranes enables their use as adaptive compartments, making them indispensable for all life on Earth. Efforts to create life-like artificial cells will likely involve mimicking the structure and function of lipid membranes to recapitulate fundamental cellular processes such as growth, transport, and signal transduction. As such, there is considerable interest in chemistry that mimics the functional properties of membranes, with the express intent of recapitulating biological phenomena. I will present recent efforts from our lab that leverage advances in chemical biology and systems chemistry to mimic the remarkable properties of living membranes. Specifically, I will discuss how we have been able to repurpose membrane translocating proteins to enable the self-encoded display of peptides on artificial cells. By programming synthetic cell-cell interactions, these studies have allowed us to achieve the de novo generation of functional synthetic tissues. Inspired by our ongoing work in developing lipid bioconjugation strategies to generate artificial cell membranes, we have also developed new tools for manipulating membranes in cells. I will discuss strategies for the selective bioconjugation of lipids in live cells. We hope that these tools will help reveal the location and functional roles for unique lipid species that are found within human cells.
Download PDF
Chuan He
Nucleic Acid Chemical Biology
February 23
I will present our efforts to design and develop molecular probes that can selective label nucleic acids in vitro and inside cells. These probes allow RNA secondary structure mapping, profiling single-stranded DNA for active transcription annotation, mapping RNA-RNA interactions inside cells, and covalent targeting of nucleic acids. I will also present our recent studies on RNA modifications. Over 150 types of post-transcriptional RNA modifications have been identified in all kingdoms of life. We have discovered RNA demethylation and characterized proteins that selectively recognize m6A-modified mRNA and affect the translation status and lifetime of the target RNA. I will present our recent advances on developing chemical and biochemical methods to sequence various RNA modifications.
Steve Granick
Professor, University of Massachusetts
Some Puzzles and Research Opportunities in Soft Matter Science Engineering
October 20
A fundamental challenge of modern physical science is to form structure that is not frozen in place but instead reconfigures internally driven by energy throughput and adapts to its environment robustly. With catalytic enzymes, we find problems of mechanobiology. With chemical reactions, we find problems of active matter. Exploring the potential of liquid-phase TEM to image individual molecules and their mutual interactions, we analyze failed and successful encounters of polymers and proteins, and visualize enzyme conformational changes in real time. A picture emerges in which simple experiments, performed at single-particle and single-molecule resolution, can dissect macroscopic phenomena in ways that surprise.
Wilfred van der Donk
Biosynthesis and Engineering of Macrocyclic Peptidede Natural Products
February 10
The genome sequencing efforts of the past 20 years have revealed that ribosomally synthesized and post-translationally modified peptides (RiPPs) constitute a large class of peptide natural products. These molecules are produced in all three domains of life, their biosynthetic genes are ubiquitous in the currently sequenced genomes, and their structural diversity is vast. Furthermore, they are increasingly recognized for their involvement in fighting or causing human disease. This presentation will discuss the use of genome mining and synthetic biology for the discovery of new RiPPs via an automated platform and efforts to understand the remarkable enzymes that carry out the macrocy- clization chemistry.
Download PDF
Tijana Rajh
Nanoparticles Meet Living Systems
March 3
Nanotechnology offers efficient solu ons for many areas of science and technology spanning from solar cells to medicine. Owing to rapid development of synthesis and nanofabrica on methods we are able to engineer advanced materials with molecular precision and assemble them into func onal devices. Integra on of inorganic nanopar cles with so and biological materials results in promising types of hybrids that enable integra on of abio c nanopar cles with living organisms and enable control and manipula on of biomolecules within the living cells. TiO2 nanopar cles with their extraordinary stability, excep onal photoreac vity and biocompa bility have a special place in biomedical solu ons of the future. Reconstructed surfaces of TiO2 nanopar cles differ from the bulk by the presence of highly reac ve under-coordinated surface. Manipula on of the nanopar cle surface was found to alter the way nanopar cles interact with light, enhance their chemical reac vity and improve their op cal proper es in the visible region. These ligands act as "leads" that bridge the electronic proper es of semiconductors to biomolecules to create electroac ve biocomposites. Photoinduced charge separa on in electroac ve biocomposites was employed to control and manipulate processes within the living cells and alter their func oning, thereby establishing new concepts and tools for advanced medical therapies. We have u lized monoclonal an -EGFR an bodies (C225) for targe ng of nanopar cles to the epithelial colon cancer cells. Photoinduced charge separa on was than employed to create reac ve oxygen species and induce apoptosis in the tumor cells. “Cold light,” or bioluminescence, the same property exhibited by fireflies, was also used to develop “light-free” localized therapy that is ac vated only in cancers, leaving healthy cells intact. The effect of the “cold light” on cancer cell metabolic pathways was inves gated both in 2D cell cultures and 3D spheroid model culture. On the other hand, metallic nanopar cles in the form of colloidosomes were used to vectorially pump protons across biomembrane and mimic key biological func ons of conver ng light into chemical energy. Currently, we are developing nanopar cles with spin selected states that hold a promise for sensi ve detec on of ion flow and signal transducon.
Robert J. Cava
Russell Wellman Moore, Professor of Chemistry, Princeton University
Finding New Materials – A Chemical Perspective
Finding new materials that are of interest to materials physicists is, in my view, best done by using the insights and tools of solid‐state chemistry to direct exploratory synthesis towards finding materials with potentially new electronic and magnetic properties. Unfortunately, however, most solid‐state chemists do not feel comfortable with the language of physics, and on the other side, materials physicists do not in general understand the complexities of chemistry and its language. I intend in this talk to describe some of the specific examples of new materials that we have found in recent years with a physics‐chemistry connection in mind, with a particular emphasis on the ones we found on doing syntheses at moderate pressures. Theoretical physicists, who I personally find to be lots of fun, seem even further in research culture from “bench chemists”, making connections with them even harder ‐ although it is the theorists who most often live in gardens of untested ideas. Some of the materials described in this talk you may find interesting and others not so interesting. The main idea is to keep trying, propose and find new materials to see what sticks, welcome collaborations, and never give up.
Jauch Professor, and Professor of Structural Biology at Stanford University School of Medicine
The Exquisite Choreography of Translation Initiation
Translation is the last step of gene expression and a point of extensive regulation. How an mRNA is chosen to be translated, how a translation start site is found at the 5’ end of an mRNA and how translation gets started at the correct site all remain a mystery, veiled by the dynamic nature of the process and myriad factors that guide it. We have developed and applied single‐molecule approaches merged with structural methods to observe and animate this process in higher organisms. Our goal is a direct real‐Ɵme movie of molecular processes underlying how proteins are made.
Omar Yaghi
Professor of Chemistry, Berkeley College of Chemistry
Reticular Chemistry and Materials for Water Harvesting from Air Anytime Anywhere
Water is essential to life. It is estimated that by 2050 nearly half of the world population will live in water stressed regions, due to either arid conditions or lack of access to clean water. This presentation outlines the parameters of this vexing societal problem and presents a solution to the global water challenge. Reticular Chemistry, a new branch of science has led to metal−organic frameworks (MOFs), which have emerged as a unique class of porous materials capable of trapping water at relative humidity levels as low as 10%, and doing so with facile uptake and release kinetics. From laboratory testing to field trials in the driest deserts, kilogram quantities of MOFs have been tested in several generations of devices. We show that the vision of having clean water from air anywhere in the world at any time of the year is potentially realizable with MOFs and so is the idea of giving “water independence” to the citizens of the world.