Gloves Outside of Labs
Personal protective equipment (PPE) are worn by researchers as the last line of defense against potential skin contact with hazardous materials. Dermal exposures to hazardous materials can lead to a variety of occupational skin diseases (OSD) and systemic toxicity. According to research conducted by the Centers for Disease Control (CDC), OSD are the second most common type of occupational disease and are most likely to occur in the following forms:

- Irritant contact dermatitis,
- Allergic contact dermatitis,
- Skin cancers, infections & injuries
- Other miscellaneous skin diseases

Contact dermatitis is one of the most common types of occupational illness, with an estimated annual cost exceeding $1 billion to employers. After handling materials in a fume hood, a researcher must assume that his or her gloves are potentially contaminated. Please help prevent potential exposures outside the laboratory by safely discarding your gloves and washing your hands before leaving the laboratory. If you must, follow the “ONE GLOVE METHOD” to protect others.

One Glove Method
When there is a need to transport a container of hazardous material outside of a lab space, ASU Department of Environmental Health & Safety asks that employees carry the container with a gloved hand and use an ungloved hand to access door handles and for depressing elevator buttons.
Campus Bollards Installed to Restrict Vehicle Traffic May Cause Pedestrian Injuries from Trip & Fall

When you walk on campus, the new vehicular control bollards are hard to miss, when they are upright that is. But many are left laying down which could cause painful trips and falls for ASU pedestrians. In fact, one of our own DCB employees recently suffered a painful foot injury as a result of a downed bollard.

Even though the device lies parallel with pedestrian traffic, there is a narrow portion that rises about 2 inches from the walking surface. Pedestrians are urged to look forward when walking and when riding bikes or skateboards to avoid trip and fall hazards.

The ASU Department of Environmental Health and Safety urges employees to report downed bollards to Facilities Management. In most cases, a special tool is needed to return the bollard to its upright position. Your report will provide FACMAN with information needed to identify problem areas and direct staff to restore the bollard to its normally upright position. ASU Facilities Management (FACMAN) reporting number is 480.965.3633.

According to studies conducted by the National Floor Safety Institute, here are some interesting statistics related to slips, trips and falls in the U.S.

- 8 million people visit hospital emergency rooms each year because of slip and fall injuries;
- Slip and falls are the leading cause of workers' compensation claims;
- Half of all accidental deaths in the home are caused by a fall, and most occur at ground level;
- Issues with flooring cause more than 2 million injuries a year;
- Slip and falls are the leading cause of occupational injury for workers 15-24 years of age; and
- Each year, about a third of individuals over 65 years old will fall.

Friendly reminder that EH&S is offering convenient-to-attend safety training courses throughout 2015. Sign up for training, find an online refresher, and check your record at https://cfo.asu.edu/ehs-training

SHARPS!

If you are an ASU employee who handles hazardous materials within one of ASU’s 1,600+ registered laboratory spaces, the required laboratory safety and hazardous waste management training you received introduced you to “sharps” collection practices at ASU. Following recent lab safety inspections, it is evident that there is some confusion over what a sharp is and how they should be safely collected to prevent accidental exposure and employee injuries.

According to ASU environmental management policies, sharps shall be collected consistent with Arizona Administrative Code, Title 18, Article 14, Section R18-13-1419. Please collect and treat the following as sharps:

- Needles and syringes
- Scalpels and razor blades
- Pasture pipette tips
- Contaminated broken glass
- Narrow gauge plastic pipette tips
- Capillary tubes
- Microscope slides and cover slips
Sharps shall be collected in a rigid, puncture resistant, leak-proof container that can be sealed or locked. Most of the lab equipment vendors in Sunrise offer various sizes of sharps collection containers like the one pictured here. Some of our labs are actively pursuing sustainable options by repurposing empty wide-mouth chemical containers as safe sharps collection vessels. Making the collection fun as the container labelling shows, helps employees to understand and practice safe behaviors.

Questions about sharps?
Call or email John Crozier, 480.965.5492, or contact EH&S, Henry Walsh, 480.965.8554.

What Is That Smell? Natural Gas?
As many DCB employees have experienced, natural gas like odors are occasionally detected in and around the Bateman Physical Sciences Building Complex. Most people report the odor as similar to natural gas.

Natural gas is an efficient, safe, colorless, and odorless gas. For easy detection, a harmless chemical called Mercaptan (Methanethiol, CH₃SH) is added to give the gas a distinctive odor. Most people describe the smell of gas as rotten eggs or hydrogen sulfide.

On several occasions over the past few years, phone calls made to 9-1-1 reporting gas leaks have resulted in the Tempe Fire Department intentionally evacuating Physical Science buildings. Thorough surveys conducted by response teams from Southwest Gas have never determined a source of the Mercaptan-like odor.

It has been determined that a combination of the factors could cause Mercaptan-like odors outside of our buildings. The most likely cause of these odors occurs when Mercaptans, Thiols, and other pungent materials are used inside lab fume hoods and exhausted as vapors, and fumes outside of the building. Traces of these heavier-than-air molecules fall and are detected by people passing through the area.

EH&S Training Determination Tool
The ASU Department of EH&S has developed a new application to assist employees and their managers in determining what employee safety training is required for a given job function or work location. Current employees can use the online application to see if they are missing any training opportunities. New employees or their direct supervisors may choose to use the tool to define the training needs for a new hire position. The helpful and user-friendly tool is available via the EH&S Training website or at the following web address: https://ehstrainingtool.asu.edu.

Green Labs in DCB
At the conclusion of 2014, our department had Green Lab commitments established for 102 lab spaces, this is equivalent to an outstanding 55.4% participation rate, up from 5% in May 2014. Our department has reported the greatest number of Leading Green Lab commitments on campus. In 2015, our goal is to raise sustainability awareness among research labs and increase DCB participation rate to 80%. With your help, we will continue our climb to become the greenest (most sustainable) unit on campus!

What Is That Smell? Natural Gas?
As many DCB employees have experienced, natural gas like odors are occasionally detected in and around the Bateman Physical Sciences Building Complex. Most people report the odor as similar to natural gas.

Natural gas is an efficient, safe, colorless, and odorless gas. For easy detection, a harmless chemical called Mercaptan (Methanethiol, CH₃SH) is added to give the gas a distinctive odor. Most people describe the smell of gas as rotten eggs or hydrogen sulfide.

On several occasions over the past few years, phone calls made to 9-1-1 reporting gas leaks have resulted in the Tempe Fire Department intentionally evacuating Physical Science buildings. Thorough surveys conducted by response teams from Southwest Gas have never determined a source of the Mercaptan-like odor.

It has been determined that a combination of the factors could cause Mercaptan-like odors outside of our buildings. The most likely cause of these odors occurs when Mercaptans, Thiols, and other pungent materials are used inside lab fume hoods and exhausted as vapors, and fumes outside of the building. Traces of these heavier-than-air molecules fall and are detected by people passing through the area.