Alexander Green

Biodesign A120A
1001 S. McAllister Ave.
Assistant Professor
Faculty
TEMPE Campus
Mailcode
1604

Biography

Alexander Green obtained his Ph.D. in Materials Science and Engineering from Northwestern University and his B.A.Sc. in Engineering Science from the University of Toronto. He conducted postdoctoral research at the Wyss Institute at Harvard. He has pursued research in diverse areas ranging from synthetic biology to self-assembly to carbon nanomaterials with applications in flexible electronics, energy, and low-cost diagnostics. Professor Green has published more than 50 peer-reviewed publications and several of his scientific discoveries have been successfully commercialized.

Education

  • Ph.D. Materials Science and Engineering, Northwestern University 2010
  • B.A.Sc. Engineering Science (honors), University of Toronto, Canada 2005

Google Scholar

Research Interests

Our group pursues highly interdisciplinary research at the interfaces of chemistry, biology, and materials science. Much of this work exploits programmable molecular interactions between nucleic acids and proteins to direct the assembly of nanometer-scale components and to construct information-processing circuitry inside living cells. These efforts have wide-ranging implications for biotechnology, energy, biosensing, and nanotechnology.

Our research program can be divided between two principal areas.

Synthetic Biology
Our long-term aim is to develop robust platforms for controlling biological systems that enable us to rapidly deploy cells as nano/micromachines that do useful work. Although conventional approaches in synthetic biology have relied on repurposing existing biological parts, we employ a combination of biological insight and computer-aided design to develop completely new components for synthetic biology. Such de-novo-designed parts are engineered from the ground up for optimal performance and facile integration into synthetic gene networks of greater complexity. Typical projects in this area involve the invention of new biological parts, the construction of novel synthetic gene networks, and the development of cellular or biomolecular sensor/actuator systems.

Nanomaterials
As materials reach nanometer-scale dimensions, quantum mechanical effects play important roles in defining their properties. Nanomaterials are thus intriguing materials as a result of their unique electronic, optical, and mechanical properties, and because their dimensions are commensurate with critical length scales in biology. Nevertheless, it remains difficult to synthesize nanomaterials with precisely-controlled sizes and properties, and it is challenging to assemble nanometer-scale components over macroscopic distances. Effective strategies to solve these problems are required to fully exploit the enhanced properties of nanomaterials.

Our group develops separation techniques and chemical functionalization schemes to augment the capabilities of nanomaterials. Furthermore, we program molecular interactions to direct the assembly of nanomaterials into useful architectures. We employ these strategies for applications in nanoelectronics, photonics, energy harvesting, and biosensing. Typical projects involve the synthesis and characterization of new nanomaterials and integration of these novel materials into electronic or sensing devices.

Courses

Spring 2018
Course NumberCourse Title
BCH 361Principles of Biochemistry
Spring 2017
Course NumberCourse Title
BCH 361Principles of Biochemistry
Fall 2016
Course NumberCourse Title
BCH 494Special Topics
NAN 564Bionanotechnology
BCH 564Bionanotechnology
Spring 2016
Course NumberCourse Title
BCH 361Principles of Biochemistry
MSE 499Individualized Instruction
Fall 2015
Course NumberCourse Title
BCH 494Special Topics
MBB 495Undergraduate Research
NAN 564Bionanotechnology
BCH 564Bionanotechnology